Welcome to XBeach manual’s documentation!

XBeach is an open-source numerical model which is originally developed to simulate hydrodynamic and morphodynamic processes and impacts on sandy coasts with a domain size of kilometers and on the time scale of storms. Since then, the model has been applied to other types of coasts and purposes.

The model includes the hydrodynamic processes of short wave transformation (refraction, shoaling and breaking), long wave (infragravity wave) transformation (generation, propagation and dissipation), wave-induced setup and unsteady currents, as well as overwash and inundation. The morphodynamic processes include bed load and suspended sediment transport, dune face avalanching, bed update and breaching. Effects of vegetation and of hard structures have been included. The model has been validated with a series of analytical, laboratory and field test cases using a standard set of parameter settings.

XBeach has two modes: a hydrostatic and a non-hydrostatic mode. In the hydrostatic mode, the short wave amplitude variation is solved separately from the long waves, currents and morphological change. This saves considerable computational time, with the expense that the phase of the short waves is not simulated. A more complete model is the non-hydrostatic model which solves all processes including short wave motions, but with more computational demand.

The original application, funded by the U.S. Corps of Engineers in the framework of the Morphos project and the U.S. Geological Survey, was to be able to assess hurricane impacts on sandy beaches. Since then with funding from the Dutch Public Works Department, the model has been extended, applied and validated for storm impacts on dune and urbanized coasts for the purpose of dune safety assessments. With support from the European Commission XBeach has been validated on a number of dissipative and reflective beaches bordering all regionall seas in the EU.

Beyond sandy coasts, the model has been applied to coral fringing and atoll reefs, in cooperation with and with funding by the University of Western Australia, the USGS and the Asian Development Bank. The model now also includes vegetative damping effects, with support of the U.S. Office of Naval Research.

The non-hydrostatic model has been developed initially by the TU Delft (as a prototype version of the SWASH model). For the purpose of simulating the morphodynamic processes on gravel beaches, the model was extended and validated with support from the University of Plymouth. In this mode, ship-induced waves can be simulated as well, demonstrating the flight that the model has taken since its first inception.

This development of XBeach could not have been possible without all of the above mentioned funding agencies and partners. It would also not have been possible without the enthusiastic, critical and constructive approach of all consultants, researchers, M.Sc. and Ph.D. students who have taken up XBeach, and made it into the tool that it is today.

This manual serves as an introduction to the model and a reference guide to its many functionalities, options and parameters. We sincerely hope that this document will help existing and new researchers apply the model for their purposes and advance our knowledge of coastal hydro- and morphodynamics.

Contents:

User manual

Other functionalities

Tools

Bibliography

[Ahr00]

J. Ahrens. A fall velocity equation. Journal of Waterway, Port, Coastal and Ocean engineering, 126(2):99:102, 2000.

[AM78]

D. G. Andrews and M. E. Mcintyre. An exact theory of nonlinear waves on a Lagrangian-mean flow. Journal of Fluid Mechanics, 89:609, 1978. doi:10.1017/S0022112078002773.

[BHBvW98]

T.E. Baldock, P. Holmes, S. Bunker, and P. van Weert. Cross-shore hydrodynamics within an unsaturated surfzone. Coastal Engineering, 34:173–196, 1998.

[Bat75]

J. A. Battjes. Modelling of turbulence in the surfzone. Symposium on Modelling Techniques, San Francisco,, pages 1050–1061, 1975.

[BW76]

Richard M. Beam and R. F. Warming. An implicit finite-difference algorithm for hyperbolic systems in conservation-law form. Journal of Computational Physics, 22(1):87–110, 1976. doi:10.1016/0021-9991(76)90110-8.

[Con94]

D.L. Conley, D.C.; Inman. Ventilated oscillatory boundary layers. journal of fluid mechanics. Journal of Fluid Mechanics 273, 1994.

[DKH84]

R.A Dalrymple, J.T. Kirby, and P.A Hwang. Wave diffraction due to areas of energy dissipation. Journal of Waterway, Port, Coastal and Ocean Engineering, pages 67–79, 1984.

[DRvD+10]

Christopher Daly, J. A. Roelvink, A. R. van Dongeren, J. S. M. Van Thiel de Vries, and R. T. McCall. Short wave breaking effects on low frequency waves. Proceedings 32th International Conference on Coastal Engineering, pages 1–13, 2010.

[DRvD+12]

Christopher Daly, J. A. Roelvink, A. R. van Dongeren, J. S. M. van Thiel de Vries, and R. T. McCall. Validation of an advective-deterministic approach to short wave breaking in a surf-beat model. Coastal Engineering, 60:69–83, February 2012. URL: http://linkinghub.elsevier.com/retrieve/pii/S0378383911001517, doi:10.1016/j.coastaleng.2011.08.001.

[Dar56]

H. Darcy. Les fontaines publiques de la ville de dijon. Tech. Rep., Dalmont, Paris, 1856.

[dJRB13]

M. P. C. de Jong, J. A. Roelvink, and C. Breederveld. Numerical modelling of passing-ship effects in complex geometries and on shallow water. Pianc Smart Rivers 2013, 2013.

[dRSvD+21]

Menno P de Ridder, Pieter B Smit, Ap R van Dongeren, Robert T McCall, Kees Nederhoff, and Ad JHM Reniers. Efficient two-layer non-hydrostatic wave model with accurate dispersive behaviour. Coastal Engineering, 164:103808, 2021.

[dV14]

P. L. M. de Vet. Modelling sediment transport and morphology during overwash and breaching events. Technical Report, Delft University of Technology, Delft, 2014.

[Dei93]

R. Deigaard. A note on the three-dimensional shear stress distribution in a surf zone. Coastal Engineering, 20:157–171, 1993. doi:10.1016/0378-3839(93)90059-H.

[Del11]

Deltares. Delft3D-FLOW: user manual. Technical Report, Version 3.15. Revision: 14499, 2011.

[dA87]

H den Adel. Heranalyse doorlatendheidsmetingen door middel van de forchheimer relatie. Technical Report M 1795/H 195, CO 272550/56, Grondmechanica Delft, Waterloopkundig Laboratorium. Dutch., 1987.

[Fre92]

R. Fredsøe, J.; Deigaard. Mechanics of Coastal Sediment Transport. Advanced Series on Ocean Engineering,. World Scientific, Singapore., 1992.

[GV83]

R. Galappatti and C. B. Vreugdenhill. A depth integrated model for suspended transport. Journal for Hydraulic Research, 23(4):359–377, 1983.

[GT85]

R. T. Guza and E. B. Thornton. Velocity moments in the nearshore. Coastal Engineering, 111(2):235–256, 1985.

[Hal00]

K. Halford. Simulation and interpretation of borehole flowmeter results under laminar and turbulent flow conditions. Proceedings of the Seventh International Symposium on Logging for Minerals and Geotechnical Applications, Golden, Colorado, The Minerals and Geotechnical Logging Society, pages 157–168, 2000.

[Hal81]

R.J. Hallermeier. Terminal settling velocity of commonly occurring sand grains. Sedimentology, 28:859–865, 1981.

[Har05]

A. W. Harbaugh. MODFLOW-2005 , The USGS Modular Ground-Water Model. U.S. Geological Survey Techniques and Methods, pages 253, 2005.

[Has62]

K Hasselmann. On the non-linear energy transfer in a gravity wave spectrum. Journal of Fluid Mechanics, 12((4)):481–500, 1962. doi:10.1017/S0022112062000373.

[Hir07]

C. Hirsch. Numerical computation of internal & external flows. New York, John Wiley & Sons., 2007.

[HBH89]

L.H. Holthuijsen, N. Booij, and T.H.C. Herbers. A prediction model for stationary, short-crested waves in shallow water with ambient currents. Coastal Engineering, 13(1):23–54, May 1989. URL: http://linkinghub.elsevier.com/retrieve/pii/0378383989900318, doi:10.1016/0378-3839(89)90031-8.

[JB07]

T. T. Janssen and J. A. Battjes. A note on wave energy dissipation over steep beaches. Coastal Engineering, 54:711–716, 2007. doi:10.1016/j.coastaleng.2007.05.006.

[KM75]

P. D. Komar and M. C. Miller. On the comparison between the threshold of sediment motion under waves under unidirectional currents with a discussion of the practical evaluation of the threshold. Journal of Sedimentary Research, pages 362–367, 1975.

[LS76]

D. C. L. Lam and R. B. Simpson. Centered differencing and the box scheme for diffusion convection problems. Journal of Computational Physics, 22:486–500, 1976.

[LMHK07]

K. H. Lee, Norimi Mizutani, Dong S. Hur, and Atsushi Kamiya. The effect of groundwater on topographic changes in a gravel beach. Ocean Engineering, 34:605–615, 2007. doi:10.1016/j.oceaneng.2005.10.026.

[LB00]

L. Li and D. A. Barry. Wave-induced beach groundwater flow. Advances in Water Resources, 23:325–337, 2000. doi:10.1016/S0309-1708(99)00032-9.

[LHS62]

M. S. Longuet-Higgins and R. W. Stewart. Radiation stress and mass transport in gravity waves, with application to ‘surf beats'. Journal of Fluid Mechanics, 13:481–504, 1962.

[LHS64]

M. S. Longuet-Higgins and R. W. Stewart. Radiation stress in water waves: a physical discussion with applications. Deep-Sea Research, pages 529–562, 1964.

[LHT74]

M. S. Longuet-Higgins and J. S. Turner. An ‘entraining plume’ model of a spilling breaker. Journal of Fluid Mechanics, 63(01):1–20, 1974.

[LFK+07]

R. J. Lowe, James L. Falter, Jeffrey R. Koseff, Stephen G. Monismith, and Marlin J. Atkinson. Spectral wave flow attenuation within submerged canopies: Implications for wave energy dissipation. Journal of Geophysical Research, 112:1–14, 2007. doi:10.1029/2006JC003605.

[LSF+08]

Ryan J Lowe, Uri Shavit, James L. Falter, Jeffrey R. Koseff, and Stephen G Monismith. Modeling flow in coral communities with and without waves: A synthesis of porous media and canopy flow approaches. Limnology and Oceanography, 53(6):2668–2680, 2008. doi:10.4319/lo.2008.53.6.2668.

[Mac69]

R.W. MacCormack. The effect of viscosity in hypervelocity impact cratering. AIAA Hyper velocity Impact Conference. Paper 69-354., 1969.

[MMP+14]

R. T. McCall, Gerhard Masselink, T. G. Poate, J. a. Roelvink, L. P. Almeida, M. Davidson, and P. E. Russell. Modelling storm hydrodynamics on gravel beaches with XBeach-G. Coastal Engineering, 91:231–250, 2014. URL: http://dx.doi.org/10.1016/j.coastaleng.2014.06.007, doi:10.1016/j.coastaleng.2014.06.007.

[ML04]

F. J. Mendez and I. J. Losada. An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields. Coastal Engineering, 51:103–118, 2004. doi:10.1016/j.coastaleng.2003.11.003.

[NRS90]

R.B. Nairn, J. A. Roelvink, and H.N. Southgate. Transition zone width and implications for modeling surfzone hydrodynamics. Proceedings 22th International Conference on Coastal Engineering, pages 68–81, 1990. doi:10.9753/icce.v22.

[NLB+15]

C. M. Nederhoff, Q. J. Lodder, Marien Boers, J. P. Den Bieman, and J. K. Miller. Modeling the effects of hard structures on dune erosion and overwash - a case study of the impact of Hurricane Sandy on the New Jersey coast. Proceedings Coastal Sediments, San Diego, CA, 2015.

[OGS92]

Michele Okihiro, R T Guza, and R J Seymour. Bound infragravity waves. Journal of Geophysical Research : Oceans, 97(7):11453–11469, 1992. doi:10.1029/92JC00270.

[Phi77]

O.M. Phillips. The dynamics of the upper ocean. Cambridge University Press, pages 366, 1977.

[RGE99]

B. Raubenheimer, R. T. Guza, and Steve Elgar. Tidal water table fluctuations in a sandy ocean beach. Water Resources Research, 35(8):2313, 1999. doi:10.1029/1999WR900105.

[RMTS07]

A. J. H. M. Reniers, J. H. MacMahan, E. B. Thornton, and T. P. Stanton. Modeling of very low frequency motions during RIPEX. Journal of Geophysical Research, 112(February):1–14, 2007. doi:10.1029/2005JC003122.

[RRT04]

A. J. H. M. Reniers, J. A. Roelvink, and E. B. Thornton. Morphodynamic modeling of an embayed beach under wave group forcing. Journal of Geophysical Research, 109:1–22, 2004. doi:10.1029/2002JC001586.

[RZ54]

J. Richardson and W. Zaki. Sedimentation and fluidisation - Part i. Trans. Inst. Chem. Eng., 32(1):35–53, 1954.

[RF81]

M. M. Rienecker and J. D. Fenton. A Fourier approximation method for steady water waves. Journal of Fluid Mechanics, 104:119, 1981. doi:10.1017/S0022112081002851.

[Roe93]

J. A. Roelvink. Dissipation in random wave group incident on a beach. Coastal Engineering, 19:127–150, 1993.

[Roe06]

J. A. Roelvink. Coastal morphodynamic evolution techniques. Coastal Engineering, 53:277–287, 2006. doi:10.1016/j.coastaleng.2005.10.015.

[RRvD+09]

J. A. Roelvink, A. J. H. M Reniers, A. R. van Dongeren, J. S. M. van Thiel de Vries, R. T. McCall, and Jamie Lescinski. Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engineering, 56(11-12):1133–1152, November 2009. URL: http://linkinghub.elsevier.com/retrieve/pii/S0378383909001252, doi:10.1016/j.coastaleng.2009.08.006.

[RS89]

J. A. Roelvink and M. J. F. Stive. Bar-generating cross-shore flow mechanisms on a beach. Journal of Geophysical Research, 94:4785–4800, 1989.

[Row87]

P.N. Rowe. A convenient empirical equation for estimation of the richardson-zaki exponent. Chemical Engineering Science, 42(11):2795 – 2796, 1987.

[RMF+01]

B. G. Ruessink, J.R. Miles, F. Feddersen, R. T. Guza, and Steve Elgar. Modeling the alongshore current on barred beaches. Journal of Geophysical Research, 106(22):451–463, 2001.

[RRvR12]

B. G. Ruessink, G. Ramaekers, and L. C. van Rijn. On the parameterization of the free-stream non-linear wave orbital motion in nearshore morphodynamic models. Coastal Engineering, 65:56–63, July 2012. URL: http://linkinghub.elsevier.com/retrieve/pii/S0378383912000488, doi:10.1016/j.coastaleng.2012.03.006.

[SHvdWT11]

M. Schroevers, B.J. Huisman, A. van der Wal, and J. Terwindt. Measuring ship induced waves and currents on a tidal flat in the Western Scheldt Estuary. Current, Waves and Turbulence Measurements (CWTM), 2011 IEEE/OES 10th, pages 123–129, 2011.

[Shi36]

A. Shields. Anwendung der Aehnlichkeitsmechanik under der Turbulenzforschung auf die Geschiebebewegung. Preussischen Versuchsanstalt fur Wasserbau and Schiffbau, 26:524–526, 1936.

[Sma63]

J. Smagorinsky. General circulation experiments wiht the primitive equations I. The basic experiment. Monthly Weather Review, 91:99–164, 1963. doi:10.1126/science.27.693.594.

[Smi08]

P. B. Smit. Non-hydrostatic modelling of large scale tsunamis. Technical Report, MSc thesis, Delft University of Technology, Delft, 2008.

[SJHS14]

P. B. Smit, T. T. Janssen, L.H. Holthuijsen, and Jane Smith. Non-hydrostatic modeling of surf zone wave dynamics. Coastal Engineering, 83:36–48, 2014. URL: http://dx.doi.org/10.1016/j.coastaleng.2013.09.005, doi:10.1016/j.coastaleng.2013.09.005.

[Sou97]

R.L. Soulsby. Dynamics of Marine Sands. Thomas Telford Publications, London, 1997. ISBN 07272584X.

[Ste93]

H J Steetzel. Cross-shore transport during storm surges. Technical Report, Thesis Delft University of Technology, 1993.

[SZ03]

G. S. Stelling and Marcel Zijlema. An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation. International Journal for Numerical Methods in Fluids, 43(1):1–23, 2003.

[SDeVriend94]

M. J. F. Stive and H. J. De Vriend. Shear stresses and mean flow in shoaling and breaking waves. Proceedings 24th International Conference on Coastal Engineering, pages 594–608, 1994. doi:10.9753/icce.v24.

[Sto68]

H.L. Stone. Iterative Solution of Implicit Approximations of Multidimensional Partial Differential Equations. Journal on Numerical Analysis, 5(3):530–658, 1968.

[SZB+12]

Tomohiro Suzuki, Marcel Zijlema, Bastiaan Burger, Martijn C. Meijer, and Siddharth Narayan. Wave dissipation by vegetation with layer schematization in SWAN. Coastal Engineering, 59(1):64–71, 2012. URL: http://dx.doi.org/10.1016/j.coastaleng.2011.07.006, doi:10.1016/j.coastaleng.2011.07.006.

[Sve84]

I. A. Svendsen. Wave heights and set-up in a surf zone. Coastal Engineering, 8:303–329, 1984. doi:10.1016/0378-3839(84)90028-0.

[TvMS95]

A. M. Talmon, M. C. van Mierlo, and N. Struiksma. Laboratory measurements of the direction of sediment transport on transverse alluvial-bed slope. Journal of Hydraulic Research, 33(4):495–517, 1995.

[Tho49]

L. H. Thomas. Elliptic problems in linear difference equations over a network. Technical Report, Watson Sci. Comput. Lab., Columbia University, 1949.

[vB47]

L. van Bendegom. Enige beschouwingen over riviermorphologie en rivierverbetering. Technical Report, Ministerie van Verkeer en Waterstaat. Dutch., 1947.

[vdZ14]

J. van der Zwaag. Modelling sediment sorting near the large scale nourishment ’ The Sand Motor ’. Technical Report, Delft University of Technology, Delft, 2014.

[vDS97]

A. R. van Dongeren and I. A. Svendsen. An Absorbing-Generating Boundary condition for Shallow Water Models. J. of Waterways, Ports, Coastal and Ocean Engineering, vol. 123, no. 6, pp. 303-313. Journal of Waterways, Ports, Coastal and Ocean Engineering, 123(6):303–313, 1997.

[vR10]

C van Rhee. Sediment entrainment at high flow velocity. Journal of Hydraulic Engineering, 136:572–582, 2010.

[vR85]

L. C. van Rijn. Sediment transport, part III: bed forms and alluvial roughness. Journal of Hydraulic Engineering, 110(12):1733–1754, 1985.

[vR07]

L. C. van Rijn. Unified View of Sediment Transport by Currents and Waves: part I and II. Journal of Hydraulic Engineering, pages 649–667, 2007.

[vRVanTdVriesM+15]

A.A. van Rooijen, J. S. M. Van Thiel de Vries, R. T. McCall, A. R. van Dongeren, J. A. Roelvink, and A. J. H. M. Reniers. Modeling of wave attenuation by vegetation with XBeach. E-proceedings of the 36th IAHR World Congress 28 June – 3 July, 2015, The Hague, The Netherlands., 2015.

[VSO81]

G.K. Verboom, G. S. Stelling, and M.J. Officer. Boundary conditions for the shallow water equations. Engineering applications of computational hydraulics, pages 230–262., 1981.

[WRG00]

D. J. R. Walstra, J. A. Roelvink, and J. Groeneweg. Calculation of wave-driven currents in a 3D mean flow model. In Proceedings 27th International Conference on Coastal Engineering, 1050–1063. 2000.

[WvRVanOrmondt+07]

D. J. R. Walstra, L. C. van Rijn, Maarten Van Ormondt, C. Briere, and A. M. Talmon. The Effects of Bed Slope and Wave Skewness on Sediment Transport and Morphology. In Coastal Sediments ’07, 137–150. 2007.

[ZRVL13]

M. Zhou, J. A. Roelvink, H. J. Verheij, and H. Ligteringen. Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach. International Workshop on Nautical Traffic Models 2013, Delft, The Netherlands, July 5-7, 2013. Delft University of Technology, 2013.

[ZRZvW14]

M. Zhou, J. A. Roelvink, Z. Zou, and H. J. van Wijhe. Effects of Passing Ship With a Drift Angle on a Moored Ship. ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, 2014.

[ZS05]

M. Zijlema and G. S. Stelling. Further experiences with computing non-hydrostatic free-surface flows involving water waves. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, pages 169–197, 2005.

[ZS08]

M. Zijlema and G. S. Stelling. Efficient computation of surf zone waves using the nonlinear shallow water equations with non-hydrostatic pressure. Coastal Engineering, 55(10):780–790, 2008.

[ZSS11]

Marcel Zijlema, G. S. Stelling, and P. B. Smit. SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coastal Engineering, 58(10):992–1012, 2011. URL: http://dx.doi.org/10.1016/j.coastaleng.2011.05.015, doi:10.1016/j.coastaleng.2011.05.015.

[VanRijn84]

L. C. Van Rijn. Sediment transport, part II: suspended load transport. Journal of Hydraulic Engineering, 110:1613–1641, 1984.

[vanTdVries09]

J. S. M. van Thiel de Vries. Dune erosion during storm surges. PhD thesis, PhD thesis, Delft Unversity of Technology, Delft, 2009.

Footnotes